Phospho-Rpb1 CTD (Ser2/Ser5) (D1G3K) Rabbit mAb

Phospho-Rpb1 CTD (Ser2/Ser5) (D1G3K) Rabbit mAb

分享
品牌: CST
pdf 下载产品说明书
pdf 下载SDS
用小程序,查商品更便捷
收藏
对比对比
咨询咨询
    分子量:
    250
    250
    产品介绍
    产品信息
    分子量
    250
    背景
    背景
    RNA polymerase II (RNAPII) is a large multi-protein complex that functions as a DNA-dependent RNA polymerase, catalyzing the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (1). The largest subunit, RNAPII subunit B1 (Rpb1), also known as RNAPII subunit A (POLR2A), contains a unique heptapeptide sequence (Tyr1,Ser2,Pro3,Thr4,Ser5,Pro6,Ser7), which is repeated up to 52 times in the carboxy-terminal domain (CTD) of the protein (1). This CTD heptapeptide repeat is subject to multiple post-translational modifications, which dictate the functional state of the polymerase complex. Phosphorylation of the CTD during the active transcription cycle integrates transcription with chromatin remodeling and nascent RNA processing by regulating the recruitment of chromatin modifying enzymes and RNA processing proteins to the transcribed gene (1). During transcription initiation, RNAPII contains a hypophosphorylated CTD and is recruited to gene promoters through interactions with DNA-bound transcription factors and the Mediator complex (1). The escape of RNAPII from gene promoters requires phosphorylation at Ser5 by CDK7, the catalytic subunit of transcription factor IIH (TFIIH) (2). Phosphorylation at Ser5 mediates the recruitment of RNA capping enzymes, in addition to histone H3 Lys4 methyltransferases, which function to regulate transcription initiation and chromatin structure (3,4). After promoter escape, RNAPII proceeds down the gene to an intrinsic pause site, where it is halted by the negative elongation factors NELF and DSIF (5). At this point, RNAPII is unstable and frequently aborts transcription and dissociates from the gene. Productive transcription elongation requires phosphorylation at Ser2 by CDK9, the catalytic subunit of the positive transcription elongation factor P-TEFb (6). Phosphorylation at Ser2 creates a stable transcription elongation complex and facilitates recruitment of RNA splicing and polyadenylation factors, in addition to histone H3 Lys36 methyltransferases, which function to promote elongation-compatible chromatin (7,8). Ser2/Ser5-phosphorylated RNAPII then transcribes the entire length of the gene to the 3' end, where transcription is terminated. RNAPII dissociates from the DNA and is recycled to the hypophosphorylated form by various CTD phosphatases (1).In addition to Ser2/Ser5 phosphorylation, Ser7 of the CTD heptapeptide repeat is also phosphorylated during the active transcription cycle. Phosphorylation at Ser7 is required for efficient transcription of small nuclear (sn) RNA genes (9,10). snRNA genes, which are neither spliced nor poly-adenylated, are structurally different from protein-coding genes. Instead of a poly(A) signal found in protein-coding RNAs, snRNAs contain a conserved 3'-box RNA processing element, which is recognized by the Integrator snRNA 3' end processing complex (11,12). Phosphorylation at Ser7 by CDK7 during the early stages of transcription facilitates recruitment of RPAP2, which dephosphorylates Ser5, creating a dual Ser2/Ser7 phosphorylation mark that facilitates recruitment of the Integrator complex and efficient processing of nascent snRNA transcripts (13-15). 1.Brookes, E. and Pombo, A. (2009) EMBO Rep 10, 1213-9. 2.Komarnitsky, P. et al. (2000) Genes Dev 14, 2452-60. 3.Ho, C.K. and Shuman, S. (1999) Mol Cell 3, 405-11. 4.Ng, H.H. et al. (2003) Mol Cell 11, 709-19. 5.Cheng, B. and Price, D.H. (2007) J Biol Chem 282, 21901-12. 6.Marshall, N.F. et al. (1996) J Biol Chem 271, 27176-83. 7.Krogan, N.J. et al. (2003) Mol Cell Biol 23, 4207-18. 8.Proudfoot, N.J. et al. (2002) Cell 108, 501-12. 9.Chapman, R.D. et al. (2007) Science 318, 1780-2. 10.Egloff, S. et al. (2007) Science 318, 1777-9. 11.Egloff, S. et al. (2008) Biochem Soc Trans 36, 590-4. 12.Baillat, D. et al. (2005) Cell 123, 265-76. 13.Akhtar, M.S. et al. (2009) Mol Cell 34, 387-93. 14.Egloff, S. et al. (2010) J Biol Chem 285, 20564-9. 15.Egloff, S. et al. (2012) Mol Cell 45, 111-22.
    研究领域
    表观遗传学,神经科学,
    声明 :本官网所有报价均为常温或者蓝冰运输价格,如有产品需要干冰运输,需另外加收干冰运输费。
    货号:
    13546T
    一键复制
    询价
    供应商现货
    20μl
    100ul
    选择数量
    当前规格1件起购 
    配送至
    预计5-6个工作日送达,快递: 免运费,若需干冰额外收费