老带新
PTMScan ®  HS Ubiquitin/SUMO Remnant Motif (K-epsilon-GG) Kit

PTMScan ® HS Ubiquitin/SUMO Remnant Motif (K-epsilon-GG) Kit

分享
品牌: CST
pdf 下载产品说明书
pdf 下载SDS
用小程序,查商品更便捷
收藏
对比对比
咨询咨询
产品介绍
产品介绍
产品信息
简单描述

PTMScan® HS is an enhanced PTMScan® methodology with improved identification of post-translationally modified peptides. PTMScan® technology employs a proprietary methodology from Cell Signaling Technology (CST) for peptide enrichment by immunoprecipitation using a specific bead-conjugated antibody in conjunction with liquid chromatography tandem mass spectrometry (LC-MS/MS) for quantitative profiling of post-translational modification (PTM) sites in cellular proteins. PTMs that can be analyzed by PTMScan® technology include phosphorylation, ubiquitination, acetylation, and methylation, among others. The technology enables researchers to isolate, identify, and quantitate large numbers of post-translationally modified cellular peptides with a high degree of specificity and sensitivity (HS), providing a global overview of PTMs in cell and tissue samples without bias about where the modified sites occur. For more information on PTMScan® products and services, please visit Proteomics Resource Center.

商品描述

Product Usage Information

Important for SUMO Remnant: Wild type alpha-lytic protease (WaLP) is a serine endopeptidase that cleaves at the carboxyl terminal side of amino acids alanine, serine, threonine, and valine. Please check that the predicted SUMO sequence of your model organism contains AGG, SGG, TGG or VGG at the c-terminus to ensure reactivity.

组成成分
免疫亲和磁珠(琼脂糖珠,泛素蛋白抗体),结合缓冲液 (三羟甲基氨基甲烷,甘油,氯化钠,二硫苏糖醇,水),洗涤缓冲液(磷酸盐,氯化钾,磷酸氢二钠,水)
背景
背景
Ubiquitin is a conserved polypeptide unit that plays an important role in the ubiquitin-proteasome pathway. Ubiquitin can be covalently linked to many cellular proteins by the ubiquitination process, which targets proteins for degradation by the 26S proteasome. Three components are involved in the target protein-ubiquitin conjugation process. Ubiquitin is first activated by forming a thiolester complex with the activation component E1; the activated ubiquitin is subsequently transferred to the ubiquitin-carrier protein E2, then from E2 to ubiquitin ligase E3 for final delivery to the epsilon-NH2 of the target protein lysine residue (1-3). The ubiquitin-proteasome pathway has been implicated in a wide range of normal biological processes and in disease-related abnormalities. Several proteins such as IκB, p53, cdc25A, and Bcl-2 have been shown to be targets for the ubiquitin-proteasome process as part of regulation of cell cycle progression, differentiation, cell stress response, and apoptosis (4-7).Small ubiquitin-related modifier 1, 2, and 3 (SUMO-1, -2, and -3) are members of the ubiquitin-like protein family (8). The covalent attachment of the SUMO-1, -2, or -3 (SUMOylation) to target proteins is analogous to ubiquitination.Ubiquitin and the individual SUMO family members are all targeted to different proteins with diverse biological functions. Ubiquitin predominantly regulates degradation of its target (8). In contrast, SUMO-1 is conjugated to RanGAP, PML, p53, and IκB-α, regulates nuclear trafficking, forms subnuclear structures, and regulates transcriptional activity and protein stability (9-13). SUMO-2/-3 forms poly-(SUMO) chains, is conjugated to topoisomerase II and APP, regulates chromosomal segregation and cellular responses to environmental stress, and plays a role in the progression of Alzheimer's disease (14-17). 1.Ciechanover, A. (1998) EMBO J 17, 7151-60. 2.Hochstrasser, M. (2000) Nat Cell Biol 2, E153-7. 3.Hochstrasser, M. (2000) Science 289, 563-4. 4.Bernardi, R. et al. (2000) Oncogene 19, 2447-54. 5.Aberle, H. et al. (1997) EMBO J 16, 3797-804. 6.Salomoni, P. and Pandolfi, P.P. (2002) Nat Cell Biol 4, E152-3. 7.Jesenberger, V. and Jentsch, S. (2002) Nat Rev Mol Cell Biol 3, 112-21. 8.Schwartz, D.C. and Hochstrasser, M. (2003) Trends Biochem. Sci. 28, 321-8. 9.Matunis, M.J. et al. (1996) J. Cell Biol. 135, 1457-70. 10.Duprez, E. et al. (1999) J. Cell Sci. 112, 381-93. 11.Gostissa, M. et al. (1999) EMBO J. 18, 6462-74. 12.Rodriguez, M.S. et al. (1999) EMBO J. 18, 6455-61. 13.Desterro, J.M. et al. (1998) Mol. Cell 2, 233-9. 14.Tatham, M.H. et al. (2001) J. Biol. Chem. 276, 35368-74. 15.Azuma, Y. et al. (2003) J. Cell Biol. 163, 477-87. 16.Li, Y. et al. (2003) Proc. Natl. Acad. Sci. USA 100, 259-64. 17.Saitoh, H. and Hinchey, J. (2000) J. Biol. Chem. 275, 6252-8.
翻译后修饰
unmodified
制备和贮存
保存方式

All components in this kit are stable for at least 12 months when stored at the recommended temperature. Do not aliquot the antibody.

参考图片

Motif analysis using all ubiquitin remnant peptides enriched and identified by PTMScan® HS Ubiquitin/SUMO Remnant Motif (K-ε-GG) Kit from three different samples. One milligram each of mouse brain, mouse liver, and MKN-45 human gastric cancer cells were independently digested with trypsin and immunoprecipitated with PTMScan® HS K-ε-GG Remnant Magnetic Immunoaffinity Beads. Orbitrap Fusion™ Lumos™ mass spectrometer analysis identified a total of 8,928 non-redundant sites. The motif logo shows that the K-ε-GG antibody is a general motif antibody that recognizes the K-ε-GG motif independent of protein context, without other amino acid preferences.

声明 :本官网所有报价均为常温或者蓝冰运输价格,如有产品需要干冰运输,需另外加收干冰运输费。
货号:
59322S
一键复制
询价
供应商现货
1Kit
选择数量
当前规格1件起购 
配送至
预计5-6个工作日送达,快递: 免运费,若需干冰额外收费